[Contribution from the Sloan-Kettering Institute for Cancer Research and the Division of Chemistry of the National Research Council of Canada]¹

Studies in Steroid Metabolism. XII. The Determination of the Structure of the Side Chains of C-21 Steroids by Infrared Spectrometry

By R. NORMAN JONES, P. HUMPHRIES, F. HERLING AND KONRAD DOBRINER

Infrared absorption bands associated with the C=O and C=C stretching vibrations of functional groups in the side chains of C-21 steroids are described and discussed. Examples are given illustrating the use of these spectra in the elucidation of the structure of the metabolites of adrenocortical hormones isolated from urine, and of related steroids prepared synthetically.

The determination of the structural and stereochemical relationships among the carbonyl, ethylene and hydroxyl groups in the side chains of C-21 steroids often presents a difficult problem. This communication describes a number of correlations between the infrared absorption spectra and the side chain structure which have proved of considerable help in the identification of the side chains of newly isolated or synthesized C-21 steroids. These correlations principally involve the frequency of the absorption maxima of the carbonyl stretching bands.

Experimental Methods and Results

The spectra were measured on Perkin-Elmer single beam spectrometers, and the frequencies of the absorption maxima of the C=O and C=C stretching bands are listed in Table I. Many of the steroids included in this survey contained carbonyl groups and double bonds in the ring system as well as on the side chain, and the absorption maxima associated with these are italicized in the table.

For the majority of the measurements a sodium chloride prism was used, the band positions were determined as described in a previous publication² and the estimated accuracy is \pm 3 cm.⁻¹. Representative compounds of the structural types of major interest were measured also with a calcium fluoride prism and the spectra corrected for water vapor and solvent absorption. The bands so measured are indicated in the table by an asterisk and their estimated accuracy is \pm 1 cm.⁻¹. Solvent Effects.—When the spectra are measured in car-

bon disulfide or carbon tetrachloride solution, the positions of the carbonyl stretching bands are the same. The characteristic band positions for different types of steroid carbonyl compounds have been discussed³ and summarized.⁴ Many of the more highly hydroxylated adrenocortical steroid hormones and metabolites are not sufficiently soluble in either of these two solvents, even after acetylation. They may be studied in chloroform solution⁵ but unfortunately the carbonyl frequencies, although still characteristic of the individual carbonyl groups are all displaced to lower frequencies by varying amounts; the bands are broader, and the separate carbonyl maxima in polycarbonyl compounds are less well resolved. The conjugated carbonyl bands in particular tend to exhibit an asymmetry in chloroform solution which makes a precise evaluation of the position of the maximum more difficult. In the following discussion the importance of these solvent effects must be kept in mind.

Discussion

The carbonyl bands associated with simple side

(1) Published as Contribution No. 2683 from the Laboratories of The National Research Council of Canada, and presented, in part, before the Division of Biochemistry of the American Chemical Society, April 11th, 1950, at Philadelphia, Penna.

(2) R. N. Jones, V. Z. Williams, M. J. Whalen and K. Dobriner, This-JOURNAL, 70, 2024 (1948).

(3) R. N. Jones, P. Humphries and K. Dobriner, *ibid.*, **71**, 241 (1949); **72**, 956 (1950).

(4) R. N. Jones and K. Dobriner, Vitamins and Hormones, 7, 293 (1949).

(5) Recently methylene chloride has also been employed to dissolve the more highly hydroxylated steroids; it has the advantage of greater chemical stability. chain acetates and ketones are discussed first. The displacements in the carbonyl band positions associated with hydroxyl-carbonyl and carbonylcarbonyl interactions of certain types of side chain groups are next considered, and finally the effects of introducing unsaturated linkages are noted.

20- and 21-Acetates.—The absorption of the 20acetate group (I) is at 1734–1736 cm.⁻¹ (CS₂) and is in the same range as that of the 3-, 6-, 7-, 11-, 12and 17-acetates (1734–1742 cm.⁻¹ (CS₂, CCl₄), 1719–1722 cm.⁻¹ (CHCl₃)). No comparisons between 20α - and 20β -acetates have been made but it would seem unlikely that significant differences would occur. The introduction of the 17α -hydroxyl group has no effect on the carbonyl maximum (II).

The data for simple 21-acetates are not available, but for structures III and IV a single carbonyl band is observed at $1749 \text{ cm.}^{-1} (\text{CS}_2)$, $1736-1739 \text{ cm.}^{-1} (\text{CHCl}_3)$. This value is significantly high, but whether it is characteristic of the 21-acetate *per se*, or involves interaction with substituents at the 17 and 20 positions remains to be determined.

20-Keto-21-methyl Group.—This group (V) absorbs at 1706–1710 cm.⁻¹ in CS₂ and CCl₄ and at 1698–1702 cm.⁻¹ in CHCl₃. The band positions for the 3-ketone group are 1715–1719 cm.⁻¹ (CS₂, CCl₄) and 1702–1705 cm.⁻¹ (CHCl₃), so that the 3- and 20-ketosteroids can be differentiated in carbon disulfide or carbon tetrachloride but not in chloroform solution.⁶

Several types of substituents (VI–X, XII) may be introduced at C-16, C-17 or C-21 without displacing the frequency of the 20-ketone maximum, and the band position is also unaffected by stereochemical inversion at C-17 (XIII, XIV). Bromination at the 17 α -position leaves the band position unchanged (VII) but on bromination at C-21 (XI) the maximum is displaced to 1716–1722 cm.⁻¹ (CHCl₃).

In the spectra of 16,17-methylene-20-ketones (XV) the carbonyl band is at 1685 cm.⁻¹ (CCl₄,

(6) The 4-, 6-, 7-, 11- and 12-ketosteroids all absorb between 1706 and 1719 cm. $^{-1}$ in CS₂ and CCl₄ (see reference 3) and the 11- and 12-ketosteroids at 1701-1706 cm. $^{-1}$ CHCl₄.

 CS_2) indicating that the cyclopropanyl group is exercising a conjugation effect on the 20-ketone similar to that of the cyclopropane ring in *i*-cholestanone-6 and other *i*-ketosteroids.⁷

Hydroxy-Carbonyl Interactions

The 17α-Hydroxy-20-ketone Group.—The introduction of a 17α -hydroxy group (XVI) alters the 20-ketone carbonyl absorption in a characteristic manner. In Fig. 1 the spectrum of pregnanol- 3β -one-20-acetate is compared with the spectrum of the 17α -hydroxy derivative in CCl₄ solution. A small band is observed in the latter at 1693 cm. $^{-1}$ in addition to the bands at 1735 and 1708 cm. $^{-1}$ expected for the 3-acetate and the 20-ketone groups. In the hydroxyl stretching region the absorption of the 17α -hydroxyl group is also atypical; two bands occur, one at 3620 cm.⁻¹ due to a free hydroxyl and a second band at 3500 cm.⁻¹ due to an associated hydroxyl group. The two hydroxyl bands are of about equal intensity and their relative intensities are not significantly altered by threefold dilution (Fig. 1). In dilute solution most monohydroxysteroids show a strong free hydroxyl band near 3600 cm.⁻¹ and a weak second band at 3500 cm.⁻¹ the relative intensity of which increases with concentration. To explain these effects an equilibrium between XVI and XVIA is proposed, intramolecular bonding between the hydroxylic hydrogen atom and the ketonic oxygen atom accounting for both the anomalous hydroxyl and carbonyl absorption. In chloroform solution the carbonyl bands are lowered by about 5 cm.⁻¹ but the positions and relative intensities of the hydroxyl bands are not changed (Fig. 2a). On stereochemical inversion at C-17 the carbonyl band is still observed at 1690 cm.⁻¹ (Fig. 2b) (XVII) but the intensity is lower and the relative intensities of the free and associated hydroxyl bonds change considerably on threefold dilution. Thus it

would appear that the bonding is weaker in the 17β -hydroxy-20-ketone than in the 17α -hydroxy isomer. The effect is lost on bromination at C-21 (XI), and it is not shown by the 20-keto-21-methylol compounds (VI), Fig. 3.

Other Hydroxy–Carbonyl Interactions.—Other examples of carbonyl band displacements to lower frequencies, and anomalous hydroxyl absorption attributable to intramolecular hydrogen bonding have been noted in structures involving steroid side chains.

One of these (Fig. 4) concerns the 17α -hydroxy group and the carbomethoxy group of the bisnorcholanic acid methyl ester side chain (XVIII). A band would normally be expected for the methyl ester at 1738-1742 cm.⁻¹ (CS₂, CCl₄) but the principal band actually occurs at 1719 cm.⁻¹ (CCl₄) with only a shoulder at 1740 cm.⁻¹. Two hydroxyl bands are present, their relative intensities not sensitive to concentration. An equilibrium with XVIIIA may account for both of these effects.

Another example of hydroxy-carbonyl interaction involves the 12α -acetoxy group and the 20β hydroxy group (Fig. 5) (XIX-XIXA), where the 12α -acetoxy band is displaced from 1733-1740 cm.⁻¹ (CCl₄) to 1718 cm.⁻¹ with a shoulder persisting at 1740 cm.⁻¹, again two hydroxyl bands are present, relatively insensitive to concentration. No analogous interaction occurs in XX where the positions of the acetate and hydroxyl groups are

ABSORPTION

28

interchanged, or in XXI where the hydroxyl group at C-20 has the α -configuration.⁸

Dicarbonyl Interactions

When two carbonyl groups are present in the molecule they usually absorb independently both

(8) The effect of hydrogen bonding in the 12α -acetoxy- 20β -hydroxy system is also apparent on the C-O stretching band in the 1200-1250 cm.⁻¹ region of the spectrum (see reference 9). In compounds containing XIX two bands occur, at 1251 and 1256 cm.⁻¹ (CS₂). The normal position for the 12α -acetoxy group is 1240-1242 cm.⁻¹ and the direction of this shift is in accord with the general rule that structural changes which displace the C==O stretching vibration of acetates to lower frequencies displace the 1200-1250 cm.⁻¹ acetate band in the opposite direction.

(9) R. N. Jones, P. Humphries, F. Herling and K. Dobriaer, This JOURNAL, 73, 3215 (1951).

as to frequency³ and intensity.¹⁰ Exceptions arise where the two carbonyl groups are close together^{3,4} and the resulting dicarbonyl interaction effect differs from the hydroxy-carbonyl interaction discussed above in that the carbonyl maxima are displaced to higher instead of to lower frequencies.

The 21-Acetoxy-20-ketone Group.—This group (XXII) provides an important example of this effect (Fig. 6). In chloroform solution two carbonyl maxima occur at 1745-1750 cm.⁻¹ and 1720-1727 cm.⁻¹, the normal unperturbed frequencies being 1725-1736 cm.⁻¹ for the acetate group and 1698-1702 cm.⁻¹ for the 20-ketone.^{11,12} These two

(10) R. N. Jones, D. A. Ramsay, D. S. Keir and K. Dobriner, *ibid* , **74**, 80 (1952).

(11) The band positions for 21-acetoxy-20 ketones in CS₂ and CCi₃ are at 1755-1758 and 1724-1736 cm, ⁻¹.

(12) They have been discussed previously (reference 3).

bands are highly characteristic of the 21-acetoxy-20-ketone group.

Other Dicarbonyl Interactions.—Several other structures containing two carbonyl groups at nearby positions are included in Table I. A small but significant band shift occurs in the low frequency band of 17β -acetoxy-20-ketones (XXIII) where the maxima are at 1742 and 1715–1716 cm.⁻¹ (CS₂), the normal positions being 1735–1742 and 1706– 1710 cm.⁻¹. The 11,20- and 16,20-diketones (XXIV–XXVI) absorb normally.

The reasons for these upward frequency displacements in dicarbonyl compounds are not yet clear. A simple resonance coupling between the carbonyl vibrations is ruled out, since this would displace the bands in opposite directions. A mutual effect in which the dipole field of each carbonyl diminishes the polarization of the other carbonyl bond may be involved. An effect of this kind would have a vector character; its magnitude would depend on the angle between the carbonyl bonds, being negligible if the bonds were perpendicular. It would

also depend on the spacial distance between the two oxygen atoms.

The 17α -Hydroxy-20-keto-21-acetoxy Group.— The introduction of the 17α -hydroxy group into the 21-acetoxy-20-ketone group yields a structure (XXVII) which might be expected to combine the spectrographic characteristics of XVI and XXII.

TABLE I

POSITIONS OF C=O AND C=C STRETCHING BANDS IN THE INFRARED SPECTRA OF C-21 STEROIDS

The compounds are listed in order of the structural formulas given in the text. The absorption bands associated with the carbonyl groups of the ring system, as opposed to the side chain are italicized unless they are superimposed on side chain bands. Measurements made with a calcium fluoride prism are indicated by an asterisk (see Experimental section). The donors of the compounds are indicated by superscripts to footnotes at the end of the table.

Structure	Compound	Solvent		Maxima.	cm, ~1
I	Allopregnanol-20 α -one-3-acetate ^l	CS,	1736	1719	
•	Pregnanol-20 α -acetate ¹	CS ₂	1734		
II	Allopregnanediol- 17α . 20-one-3-acetate-20'	CS ₁	1738	1719	
	Pregnanetriol-3.17 α .20-diacetate-3.20 ⁿ	CS,	1739	1,10	
	Δ^{b} -Pregnenetriol-38.17 α .20-diacetate-3.20	CS _o	1736		
Ш	Δ^4 -Pregnenetriol-17 α .20.21-one-3-acetate-21'	CHCl	1736	1666	1617
IV	Λ^4 -Pregnenetriol-17 α 20.21-one-3-diacetate-20.21 ^{6,k,t}	CS.	17404	16784	
1.	a regulation ragio jarone o diacetate abjur	CHCL	1730°	1662	1615 ^a
V. b	Allopregnanol- 3α -one- 20^{i}	CHCl	1700	1008	1010
v	Allopregnanediol-3 a fra-one-20 ^y	CHCL	1700		
	Programedial-3 a fa-one-20"	CHCl	1703		
	Λ^{5} -Pregnenol-3 β -one-20 ^w	CHCL	1702		
	$\Delta^{1,3,5:10}$ -17-Acetylestratrienol-3 ^d	CHCl	1700		
	Δ^4 -Pregnenedione-3.20 (<i>progesteronc</i>) ¹⁹	CHCl	1698*	166.3ª	1615
	$\Delta^{4\cdot1}$ -Pregnadienedione-3.20 [°]	CHCl	17024	1663ª	1618
VI	Δ^{4} . Prequentol. 21-dione-3.20 (desorwarticosterone) ⁴	CS.	1710	1677	1010
• 1	A regrenor ar dione 0,20 (desoxycorrectione)	CHCL	17034	16644	1617
	A4-Pregnenediol-116.21-dione-3 20 (corticosterone)"	CHCl	1704	1663	1017
VП	17-Bromoallopregnanone-20°	CS.	1705	1000	
V 1 1 V:T T T	$11-151 \text{ of the antipic granule 2.6 one } 20^6$	CS2	1706		
V111	At 16 - Methylpregnenol-5p-one-20	Co_2	1700	1070	
13-	$\Delta^{-10}\alpha$ -Methypregnenedione-5,20	CS2 CC	1709	10/0	
1.2	Δ° -10 α -Methoxypregnenol-3 β -one-20-acetatc	C 62	1700	1700	
	Δ -10 α -Methoxypregnenedione-3,20		1700	1079	
λ 	Δ° -16 α -Ethoxypregnenol-3 β -one-20-acctate	CS_2	1736	1709	
XI	21-Bromopregnanediol- 3α , 17α -one-20'	CHCl ₃	1720		
	21-Bromopregnanediol- 3α , $1/\alpha$ -one-20-formate- $3^{\prime\prime}$		1725*		
		CHCl ₃	1717	1 7 9 9	
	21-Broinopregnanediol-3a, 17a-one-20-acetate-37	CHCI3	1730	1722	
	2]-Bromopregnandiol-1/ α -dione-3,20 ²	CHCIa	1710	1700	
ХЦ	$16\alpha, 17\alpha$ -Epoxyallopregnanol-3 β -one-20'	CHCI ₃	1704		
	16α , 17α -Epoxyallopregnanol-3 β -one-20-acetate	CS_2	1736	1709	
	Δ^{a} -16 α , 17 α -Epoxypregnenol-3 β -one-20-acetate"	CS_2	1736	1706	
		CHCI ₃	1724	1704	
XIII	17 -Isopregnanol- 3α -one-20	CS_2	1706		
	17 -Isopregnanol- 3α -one- 20 -acetatc'	CS_2	1735*	1704*	
XIV	Δ^4 -16-Methyl-17-isopregnenedione-3,20°	CS_2	1703	1676	
XV	Δ^4 -16,17-Methylenepregnenedione-3,20°	CS_2	1685		
	Δ° -16,17-Methylenepregnenol-3 β -one-20"	CCL	1685"	17108	10000
XVI	Allopregnenedioi- 3β , $1/\alpha$ -one-20-acetate-3		17004	1710"	1690*
	(Reichstein s Compound L acetate)	CHCI	17.20	17004	1088-
	Δ° -Aliopregnenediol-3 β , 17 α -one-20-acetare-3	CHCI	1709	1693	1088
	Pregnane(10)- 3α , 17 α -one-20	CHCI	1702	1693	
	Prognauediol 3 a 17 a one 20 formute 3 ^f	CCL	17254	17104	16044
	Pregnanediol-3 α , 17 α -one-20-acetate-3 ¹	CS	17.36	1707	1696
	Pregnancdiol-3.6.17 α -oue-20-acetate-3','	CS.	1735ª	· 1708*	1693^{n}
	Δ^{5} -Pregnenediol-3 β .17 α -one-20-acetate-3 ^k	CS,	1738	1710	1697
	Δ^4 -Preguenol-17 α -dione-3.20 ^k	CHCl ₃	1704^{a}	1687ª	1661ª
					1615^{n}
	Pregnanol-17 α -trione-3,11,20 [']	CHCl ₃	1705	1685	
XVII	Δ^4 -17-Isopregneuol-17 β -dioue-3,20'	CHCl ₃	1703^{a}	1690°	1663°
					1613°
XVIII	$\Delta^{\mathfrak{s}}$ -3 β , 17 α -Dihydroxybisnorcholenic acid methyl ester*	CCl ₄	1740°	1719°	
XIX	Fregnanetriol- 3α , 12α , 20β -acetate- $12'$		1718		
	Preguanetriol- 3α , 12α , 20β -diacetate- 3 , $12'$		1735	1718°	
XX	Pregnanetriol- 3α , 12α , 20β -diacetate- $3, 20^{\circ}$	CCI4	1796		
771	Pregnanetriol- 3α , 12α , 21α -acetate- $12^{\prime\prime}$	CS2	1736		
	rregnanetrior-5a,12a,20a-acetate-20	CO_2	T100		

Studies in Steroid Metabolism

	TABLE I (Continued)				
Structure	Compound	Solvent		Maxima,	cm. ⁻¹
$XXII^{b}$	Allopregnanediol-3 <i>β</i> -21-one-20-acetate-21	CHCl3	1746	1723	
	Allopregnanol-21-dione-3,20-acetate	CS_2	1755	1732	1719
	Δ^1 -Allopregnenol-21-dione-3,20-acetate ^d	CS_2	1756	1733	1683
		CHCl3	1749	1727	1670
	Pregnanediol-3α,21-one-20-acetate-21	CHCl ₃	1750	1723	
	Pregnanetriol- 3α , 11α , 21 -one- 20 -diacetate- $11, 21^{\prime}$	CS ₂	1755	1736	
	Pregnanetriol- 3α , 12α , 21 -one- 20 -acetate- 21^{t}	CS_2	1756°	1724°	
		CHCl.	1746	1720	
	Pregnanol-21-dione-3.20-acetate ^d	CS.	1755	1732	1719
	Λ^{5} -Pregnenediol-3 & 21-one-20-acetate-21 ^{c,t}	CHCl.	1745	1721	1.10
	A4-Pregnenol-21-dione-3 20-acetate ^t	CHCl.	17474	17234	16634
	(danamusantisantenana astata)	Chiciz	1171	1720	16159
	(desoxyconneosierone decente)	00	1751	1720	1015
	Δ - Fregheneoloi-11 β ,21-dione-5,20-acetate-21		1704	1704	1073
	(corticosterone)	CHCI3	1745	1724	1663
					1620
	Δ ⁴ -Pregnenol-21-trione-3,11,20-acetate [*]	CS_2	1759°	1733*	1709°
	(dehydrocorticosterone acetate)				1678°
XXIII	Allopregnanediol-3 β ,17 α -one-20-diacetate ^c	CS_2	1736	1716	
	Δ^{5} -Pregnenediol-3 β ,17 β -one-20-diacetate ⁴	CS_2	1742	1736	1716
		CHCl ₃	1733	1722	1712
	Δ^4 -Pregnenol-17 β -dione-3,20-acetate ^{h.g}	CS ₂	1742°	1715°	1677°
	·	CHCl,	1730	1714	1666
			2.00		1617
XXIV	Pregnanol-3a-dione-11 20"	CS	17004		1017
11111	Pregnanol-3 a-dione-11,20	CS.	17374	17004	
	A Dramonstriana 2 11 00	CG2	1700	1076	
VVI	Allow many list 0.0 01 lieure 11.00%	CS2	1709	10/0	
AA V	Allopregnanedioi-35,21-dione-11,20	CS_2	1713	1703	
	Δ ⁴ -Pregnenol-21-trione-3,11,20 ^m	CHCI3	1707	1663	1620
XXVI	Pregnanol-3, B-dione-16, 20-acetate	CS_2	1739	1706	
XXVII	Allopregnanetriol- 3β , 17α -21-one-20-diacetate-3, 21°	CHCl3	1745^{a}	1724ª	
	Allopregnanetetrol- 3β , 11β , 17α , 21 -one- 20 -diacetate- 3 , $21'$	CHCl3	1745	1736	1724
	Allopregnanetriol- 3β , 17α , 21-dione-11, 20-diacetate-3, 21°	CHCl3	1746°	1724°	1705°
	Pregnanetriol-3α,17α,21-one-20-diacetate-3,21 ¹	CS_2	1753	1736	
	Pregnanetriol-3 β , 17 α , 21-one-20-diacetate-3, 21'	CS_2	1752	1732	
	Pregnanetetrol- 3α , 11 β , 17 α , 21-one-20-diacetate-3, 21 ^v	CHCl ₃	1750	1733	1720
	Pregnanediol-17a,21-trione-3,11,20-acetate-21*	CHCl	1748	1 7 25°	1708°
	Pregnanetriol-4, 17α , 21 -trione-3, 11 , 20 -diacetate-4, 21^{*}	CHCI	1744ª	17254	1706*
	Λ + Pregnenediol-17 α 21-dione-3 20-acetate-21 ^k	CHCI.	17464	17284	16604
	(Prichetein's Compound Sacratae)	Circia	1140	1120	16159
	At Pregnenediol 17 a 21 trione 3 11 20 acostate 21 ⁸	CHCI.	17494	17994	17059
	(contisone acetate)	CIICI3	1140	1140	60 ⁶ 1617 ⁶
	At Bromonstrial 11 & 17, 21 diana 2 20 aastata 214	CHCI	1740	1799	1665
	Δ - Frequence internal α_{2} - and α_{3} - active α_{2}	CHCI	1740	1740	1005
VVVIII	(Actual 5 Compound F accuse)	00	1749	1070	1010
XXVIII	Als All successive list p. 200.0.1	CS2	1744	1010	
XXIX	Δ ¹ ^o -Allopregnenediol-3β,20β-diacetate	CS ₂	1739		
	Δ^{16} -Pregnenediol-3 β ,20 β -diacetate	CS_2	1742		
XXX	Δ^{17-20} -Allopregnenediol-3 β , 20-diacetate (<i>cis</i> and <i>trans</i> -isomers)'	CS_2	1750	1739	
	$\Delta^{17:20}$ -Pregnenediol-3 α ,20-diacetate	CS_2	1750	1742	
	$\Delta^{5.17;20}$ -Pregnadienediol-3 β ,20-diacetate'	CS_2	1749	1736	
	$\Delta^{17:20}$ -Pregnenetriol-3 β ,11 β ,20-triacetate ^f	CS_2	1753	1739	
	$\Delta^{17:20}$ -Pregnenetriol- 3α , 12α , 20 -triacetate ¹	CS_2	1756	1739	
XXXI	$\Delta^{17:20}$ -21-Benzalpregnenetriol-3 α , 12 α , 20-triacetate ¹	CS_2	1762	1738	
XXXII	Δ^{16} -Allopregnenol-3 β -one-20-acetate ²	CS_2	1736	1668	
	Δ^{16} -Preguenol-3 α -20 ^{<i>l</i>} .	CHC1.	1656		
	Δ^{16} -Pregnenediol-3 8.128-one-20-diacetate ^d	CS.	1740	1671	
	$\Delta^{5.16}$ -Pregnadienediol-2.38-one-20-diacetate	CS ₀	1743	1671	
	Δ ⁴ ·16-Pregnadienedione-3 20°	CHCI.	1662*	16174	1587°
XXXIII	Δ ^{5.16} -16-Methylpregnadienol-3 <i>8</i> -one-20-acetate ⁶	CS.	1736	1661	1001
	- to recurring the survey of one work accurate	CHCI.	1791	1652	
XXXIV	At-17 - Vinvlandrostanol-17 8-one-2t	CCL	20222	1004	
VYYV	$\Delta = 17 a^{-1} \text{ mylandrostenoi} 17 \rho \text{ one } 9^{\frac{1}{2}}$	CUCIA	220002		
ALAA V	$\Delta = 17 \text{ arbitry hydrau ostenior 17 p-offe-o}$		221042		
	Al-17-Extry Hylandi Ostenediol-59,17-acetate-5	OTTO	0010		
	A acetate-3	CHCI3	2210-2		

 $^{\circ}$ Determined with calcium fluoride prism. $^{\circ}$ For additional examples in CS₂ solution see references 2 and 3. $^{\circ}$ C. Djerassi

and G. Rosenkranz, Syntex, S. A. Mexico City, Mexico. ⁴ C. Djerassi and C. R. Scholz, Ciba Pharmaceutical Products Inc., Summit, N. J. ^e L. F. Fieser and M. Fields, Harvard University, Cambridge, Mass. ^f T. F. Gallagher, Sloan-Kettering Institute, New York, N. Y. ^e G. A. Grant, Ayerst, McKenna and Harrison Ltd., Montreal, P. Q. ^h E. B. Hershberg, The Schering Corp., Bloomfield, N. J. ⁱ W. H. Hoehn, G. A. Breon and Co., Kansas City, Mo. ⁱ J. R. Jamieson and E. Lozinski, Charles E. Frosst and Co., Montreal, P. Q. ^k P. L. Julian, The Glidden Co., Chicago, Ill. ⁱ O. Kamm, Parke, Davis and Co., Detroit, Mich. ^m M. H. Kuizenga, The Upjohn Co., Kalamazoo, Mich., ⁿ H. L. Mason, Mayo Clinic, Rochester, Minn. ^o R. E. Marker, Pennsylvania State College, State College, Pa. ^p H. B. MacPhillamy, Ciba Pharmaceutical Products, Inc., Summit, N. J. ^e P. A. Plattner, Eidg. Tech. Hochschule, Zurich, Switz. ^r T. Reichstein, University of Basel, Basel, Switz. ^s L. H. Sarett, Merck and Co., Inc., Rahway, N. J. ⁱ C. R. Scholz, Ciba Pharmaceutical Products Inc., Summit, N. J. ^w E. Schwenk, The Schering Corp., Bloomfield, N. J. ^s C. M. Suter, Sterling-Winthrop Research Inst., Rensselaer, N. Y. ^w R. Turner, Harvard University, Cambridge, Mass. ^s R. B. Wagner, Pennsylvania State College, State College, Pa. ^w Compound isolated at the Sloan-Kettering Institute. ^s C=C—H or C≡C—H carbon-hydrogen stretching vibration.

In fact, the introduction of the 17α -hydroxy group into XXII does not give rise to any new band analogous to the 1685–1695 cm.⁻¹ band of XVI (Fig. 6). In the hydroxyl stretching region compounds containing XXVII possess a strong free hydroxyl band at 3600–3625 cm.⁻¹, a weaker associated hydroxyl band at 3500 cm.⁻¹ and, in some cases, a third band¹³ between 3400 and 3450 cm.⁻¹.

Such hydroxyl bands in the spectra of acetylated adrenocortical steroids or their metabolites are highly suggestive of the presence of the 17α -hydroxyl group. In these compounds positions 11β - and 17α - are the only ones at which hydroxyl groups resistant to mild acetylation are normally encountered, and these two positions can be readily distinguished, since mild oxidation converts the 11β -hydroxyl group to an 11-ketone and a new maximum appears at 1710-1716 cm.⁻¹ (CS₂, CCl₄), 1702 cm.⁻¹ (CHCl₃).

Unsaturated Groups

Unsaturated Acetates.—In the unsaturated acetates XXVIII and XXIX the β,γ -double bonds have no effect on the carbonyl frequency, but in the enol acetate XXX the band is displaced from 1735– 1742 cm.⁻¹ to 1749–1756 cm.⁻¹ (CS₂) and a further displacement to 1762 cm.⁻¹ (CS₂) is noted in the cross conjugated system XXXI. An absorption maximum between 1750 and 1765 cm.⁻¹ (CS₂, CCl₄) is seen in many compounds containing the —C—C—O—C—O structure (*e.g.*, phenolic acetates³).

(13) This third band is not necessarily associated with an hydroxyl vibration; it may be a harmonic carbonyl band, since most of the compounds containing XXVII possess several ring carbonyl groups and the carbonyl intensity will be strong.

other conjugated ketones.¹⁴ In chloroform solution the differentiation among these conjugated ketones is rendered more difficult by the broadening of the band, but the C=C stretching bands of conjugated ketones are readily observed.¹⁶ and serve to identify the Δ^{16} -20-ketone group.¹⁶ The carbonyl frequency is not altered on introduction of a 16-methyl group XXXIII.

17-Vinyl and 17-Ethynyl Groups.—The 17α vinyl group in XXXIV gives a weak =C—H stretching vibration at 3085 cm.⁻¹ but the C=C stretching band has not yet been detected. The ethynyl group in XXXV is easily recognized by the strong narrow C=C—H carbon-hydrogen stretching band at 3340 cm.⁻¹. Typical curves illustrating these characteristic ethylenic and acetylenic bands in steroid spectra have been published elsewhere.¹⁷ In the ethynyl compounds a C=C stretching band should occur between 2080 and 2180 cm.⁻¹ but has not yet been detected. The wide variation in the intensity of this band in acetylenic compounds has been commented on by Wotiz and Miller.¹⁸

Elucidation of Structure

These correlations have been applied to several problems concerned with the identification of naturally occurring and synthetic steroids, and a few examples may be briefly noted.

(14) Δ^{16} -20-ketone, 1666-1670 cm.⁻¹; Δ^{4} .3-ketone, 1674-1678 cm.⁻¹; Δ^{5} -7-ketone, 1677 cm.⁻¹; Δ^{1-3} -ketone, 1680-1684 cm.⁻¹; $\Delta^{9:11}$ -12-ketone, 1680-1684 cm.⁻¹; $\Delta^{9:11}$ -12-ketone, 1680-1684 cm.⁻¹; Δ^{15} -17·ketone, 1716 cm.⁻¹ (all in CS₂ or CCl₄ solution). Δ^{16} -20-ketone, 1652-1662 cm.⁻¹; Δ^{4} -3-ketone, 1660-1668 cm.⁻¹; Δ^{1-3} -ketone, 1670 cm.⁻¹

(15) R. N. Jones, P. Humphries, E. Packard and K. Dobriner, THIS JOURNAL, 72, 86 (1950).

(16) Δ^{16} -20-ketone, 1585-1590 cm. ⁻¹; Δ^{1-3} -ketone, 1604-1609 cm. ⁻¹; $\Delta^{9:1L}$ -12-ketone, 1607 cm. ⁻¹; Δ^{4-3} -ketone, 1615-1619 cm. ⁻¹ (all in CHCls solution).

(17) R. N. Jones, Chemistry in Canada, 2, 26 (94) (1950).

(18) J. H. Wotiz and F. A. Miller, THIS JOURNAL, 71, 3441 (1949).

(A).—During an investigation of the steroid hormones and nietabolites excreted in the urine of patients receiving cortisone or ACTH, 19 A4-pregnenediol- 17α , 21-trione-3, 11, 20-acetate-21 (cortisone acetate) and Δ^4 -pregnenetriol-11 β ,17 α ,21dione-3,20-acetate-21 (Kendall's Compound F acetate) were isolated from acetylated ketonic fractions. Those substances were readily identified by comparison with the infrared spectra of authentic specimens between 950 and 1150 cm. $^{-1}$. It was anticipated that metabolites of these hormones would also occur in which ring A is reduced. As yet few model compounds of this type are available for direct spectral comparison, but the presence of compounds XXXVI and XXXVIII in human urine was inferred from the spectra of the hydroxyl and carbonyl stretching regions of the spectra of two acetylated steroid metabolites which were isolated (XXXVII, XXXIX).

The spectrum of one of these comounds (XXXIX) possessed maxima in chloroforr solution at 1752, 1724 and 1708 cm. $^{-1}$. The enter band was more intense than either of the other two (Fig. 7), and bands were also present 1 the hydroxyl region at 3610 and 3460 cm.⁻¹ The bands at 1752 and 1724 strongly suggested th presence of the 21-acetoxy-20-ketone group (2 XII). and the absence of any carbonyl absorption below 1700 cm.⁻¹ showed that the Δ^4 -3-ketone roup of the hormone had been reduced. The ba at 1708 cm.⁻¹ suggested a ketone group at e her position 3, or 11 (positions 4, 6, 7 and 12) t excluded from consideration on biochen al grounds. It was considered that the reductic of the Δ^4 -3-ketone would more probably yield a 3hydroxyl than a 3-ketone group and the 1708 cm.⁻¹ band was tentatively assigned to the 11ketone. An acetylated 3-hydroxyl group would be required by this hypothesis; this would absorb in chloroform solution near 1720 cm.⁻¹ and the likelihood of two carbonyl groups contributing to the 1724 cm.⁻¹ maximum seemed reasonable in view of its high relative intensity. If the 1708

(19) S. Lieberman, L. B. Hariton, M. B. Stokein, P. E. Studer and K. Dobriner, Federation Proc., 10, 216 (1951).

cm.⁻¹ band were associated with the 11-ketone group, then the hydroxyl group present in the acetylated compound is almost certainly at the 17α position. Thus the tentative structure XXXIX was arrived at for this acetylated metabolite and this was subsequently confirmed by oxidation to XL and comparison with the spectrum of the authentic compound which was available.

(B).—In the course of an investigation of the action of perbenzoic acid on the enol acetate XXX a product was obtained by Gallagher and Kritchevsky²⁰ which exhibited the characteristic absorption of the 17-hydroxy-20-keto-21-methyl group (XVI) in both the C=O and O-H regions. An intermediate product, obtained prior to hydrolysis possessed no hydroxyl band and the carbonyl absorption of a normal saturated 3-acetate consistent with the epoxide structure XLI.

(C).—In a reinvestigation by Gallagher and Fukushima²¹ of a reaction described by Marker²² for the introduction of the 17 α -hydroxyl group, the product obtained did not exhibit the characteristic absorption of the 17 α -hydroxy-20-keto-21 methyl group, and this observation led subsequently to the correct identification of the compound as a 16-methoxy-20-keto-21-methyl derivative by chemical means.

(D).—During the synthesis of progesterone labeled at position 21 with C^{14} , Heard and Yates²³

(20) T. H. Kritchevsky and T. F. Gallagher, THIS JOURNAL, 73, 184 (1951).

(21) D. K. Fukushima and T. F. Gallagher, ibid., 72, 2306 (1950).

(22) R. E. Marker, ibid., 71, 4149 (1949).

(23) R. D. H. Heard and C. Yates, private communication.

utilized the reaction between Δ^{5} -3 β -acetoxyetiocholenyl chloride and dimethylcadmium to introduce the 20-keto-21-methyl group. The course of this reaction is sensitive to changes in reagent concentration, and Δ^{5} -3 β -acetoxyetiocholenic acid methyl ester may be obtained instead of the desired Δ^{5} -pregnenol-3 β -one-20-acetate. These two compounds possess identical melting points and optical rotations, and show no mixed melting point depression. The required 20-ketone absorbs at 1706 cm.⁻¹ and the undesired methyl ester at 1735 cm.⁻¹ so that measurement of the carbonyl region of the infrared spectrum provided a rapid method for the identification of the product.

Concluding Remarks

For convenience in presentation, the infrared absorption characteristic of the side chain structures have been treated here independently of absorption within the ring system. This separation is of course an artificial one, and in the evaluation of the infrared absorption of any individual compound the absorption of the whole molecule must be considered, as was done in the case of XXXIX above.

Acknowledgments.—The authors wish to thank the several investigators listed individually in a footnote to Table I, who kindly made available many of the compounds. The technical assistance of Mr. D. S. Keir and Mr. R. Lauzon at the National Research Council and Miss B. Boland and Miss R. Connolly at the Sloan-Kettering Institute is also gratefully acknowledged.

This investigation was aided by grants from the American Cancer Society (upon recommendation of the Committee on Growth of the (U. S.) National Research Council), the Commonwealth Fund, the Anna Fuller Fund, the Albert and Mary Lasker Foundation, the National Cancer Institute of the National Institutes of Health, U. S. Public Health Service.

New York, N. Y. Ottawa, Canada

RECEIVED OCTOBER 26, 1951

[CONTRIBUTION FROM THE DIVISION OF CHEMISTRY OF THE NATIONAL RESEARCH COUNCIL OF CANADA¹ AND THE SLOAN-KETTERING INSTITUTE FOR CANCER RESEARCH]

The Infrared Spectra of α -Brominated Ketosteroids

By R. NORMAN JONES, D. A. RAMSAY, F. HERLING AND KONRAD DOBRINER^{1a}

Received November 29, 1951

The effect of bromination at the α -carbon atom on the carbonyl stretching bands in the infrared spectra of keto steroids is shown to depend on the stereochemical configuration of the carbon-bromine bond. It is suggested that if the bromine atom enters at an equatorial position on the cyclohexanone ring, in the chair configuration the band is displaced by about 20 cm.⁻¹ to higher frequency while bromination at a polar position causes little displacement. The 20-ketone band is similarly displaced by about 20 cm.⁻¹ on bromination at C-21 but is hardly affected by bromination at the 17 α -position. A diminution in the integrated adsorption intensity accompanies a positive frequency shift on bromination. These observations aid in the determination of the steric configuration and structure of brominated ketosteroids.

In the course of a systematic study of the infrared spectra of steroids, it has been observed that, in certain instances, the spectra may be influenced in a characteristic manner by stereochemical as well as by structural differences. One example of such stereochemical specificity involving the C-O stretching vibrations at 1200–1250 cm.⁻¹ in the spectra of 3α - and 3β -acetoxy steroids has been discussed previously.² The frequency³ and intensity⁴ of the carbonyl stretching bands in ketosteroids are influenced by bromination at an adjacent methylene group, and it is the purpose of this communication to show that the effect of such α bromination depends on the stereochemical configuration of the carbon–bromine bond.

Experimental Methods and Results

The spectra were determined on a Perkin-Elmer Model 12C spectrometer, using a calcium fluoride prism. The

(1a) Died March 10, 1952.

frequencies of the carbonyl maxima, which are given in Table I, were determined after correction for water vapor and solvent absorption, and the estimated accuracy is ± 1 cm.⁻¹. A few of the measurements, indicated in the table by an asterisk, were made with a sodium chloride prism; these are accurate to ± 3 cm.⁻¹. The integrated absorption intensities were determined by the modification of the Wilson and Wells method described previously⁴ for polycarbonyl compounds.

Discussion

In the 3-ketones, the introduction of a single α bromine atom increases the frequency of the carbonyl maximum by 13–19 cm.⁻¹ and depresses the integrated absorption intensity⁴ by about 25%. The introduction of a second bromine atom at the same α -carbon atom to form a gem dibromide produces little further change in either the carbonyl frequency or intensity, but if a second bromine atom is introduced on the α' -methylene group, to yield a 2,4-dibromo-3-ketone, an additional increase of about 20 cm. $^{-1}$ occurs in the carbonyl frequency and the intensity is further depressed. A positive frequency shift is observed also in a 6-bromo-7-ketone (see Table I). In some of these compounds, e.g., 2-bromoandrostanol-17-one-3-hexahydrobenzoate, the brominated carbonyl band overlaps ester carbonyl absorption at 1735-1740 cm.⁻¹.

In the 11-bromo-12-ketones series, the two com-

⁽¹⁾ Published as Contribution No. 2696 from the Laboratories of The National Research Council of Canada, and No. XIII in the series "Studies in Steroid Metabolism."

⁽²⁾ R. N. Jones, P. Humphries, F. Herling and K. Dobriner, THIS JOURNAL, 73, 3215 (1951).

⁽³⁾ R. N. Jones, P. Humphries and K. Dobriner, *ibid.*, 72, 956 (1950).

⁽⁴⁾ R. N. Jones, D. A. Ramsay, D. S. Keir and K. Dobriner, *ibid.*, **74**, 80 (1952).